题目内容

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的四个顶点为A1,A2,B1,B2,两焦点为F1,F2,若以F1F2为直径的圆内切于菱形A1B1A2B2,切点分别为A,B,C,D,则菱形A1B1A2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=(  )
A.
5
+1
2
B.2
5
-2
C.
5
+2
2
D.
5
-1
2

菱形A1B1A2B2的面积S1=2ab,
设矩形ABCD,BC=2m,BA=2n,∴
m
n
=
a
b

∵m2+n2=c2,∴m=
ac
a2+b2
,n=
bc
a2+b2

∴面积S2=4mn=4•
abc2
a2+b2

S1
S2
=
a2+b2
2c2

c
a
=
b
a2+b2
,b2=a2-c2
∴a4-a2c2+c4=0
∴a4-3a2c2+c4=0
a2
c2
=
3+
5
2
b2
c2
=
1+
5
2

S1
S2
=
a2+b2
2c2
=
5
+2
4

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网