ÌâÄ¿ÄÚÈÝ
ÒÑÖªÔ²C¹ý¶¨µãA£¨0£¬a£©£¨a£¾0£©£¬ÇÒÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
£¨1£©ÇóÔ²CµÄÔ²ÐĵĹ켣·½³Ì£»
£¨2£©Éè|AM|=m£¬|AN|=n£¬Çó
+
µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì£®¡÷ABCÖУ¬a£¬b£¬cÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒlgsinA£¬lgsinB£¬lgsinC³ÉµÈ²îÊýÁУ¬ÔòÏÂÁÐÁ½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵÊÇ£¨¡¡¡¡£©
£¨1£©ÇóÔ²CµÄÔ²ÐĵĹ켣·½³Ì£»
£¨2£©Éè|AM|=m£¬|AN|=n£¬Çó
m |
n |
n |
m |
·ÖÎö£º£¨1£©ÉèÔ²CµÄÔ²ÐÄΪC£¨x£¬y£©£¬Ô²µÄ°ë¾¶ r=
£¬ÓÉÔ²CÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®¿ÉµÃ|y|2+a2=r2£¬ÕûÀí¿ÉÇó£®
£¨2£©Éè¡ÏMAN=¦È£¬|AM|=m£¬|AN|=n£¬|MN|=2a£¬¹Êm2+n2-2m•n•cos¦È=4a2£¬ÓÉS¡÷MAN=
mnsin¦È=
•a•2a£¬
=2cos¦È+2sin¦È=2
sin(¦È+
)¡Ü2
£¬Öªµ±¦È=
ʱ£¬
+
È¡×î´óÖµ2
£¬ÓÉ´ËÄÜÇó³ö
+
µÄ×î´óÖµ¼°´ËʱԲCµÄ·½³Ì£®
ÓɵȲîÊýÁеÄÐÔÖʵÃsin2B=sinA•sinC£¬·Ö±ð»¯¼òÁ½Ö±Ïß·½³ÌµÄÒ»´ÎÏîϵÊýÓë³£ÊýÏîÖ®±ÈµÄ½á¹û£¬´Ó¶øµÃµ½Á½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵ£®
x2+(y-a)2 |
£¨2£©Éè¡ÏMAN=¦È£¬|AM|=m£¬|AN|=n£¬|MN|=2a£¬¹Êm2+n2-2m•n•cos¦È=4a2£¬ÓÉS¡÷MAN=
1 |
2 |
1 |
2 |
n |
m |
2 |
¦Ð |
4 |
2 |
¦Ð |
4 |
m |
n |
n |
m |
2 |
m |
n |
n |
m |
ÓɵȲîÊýÁеÄÐÔÖʵÃsin2B=sinA•sinC£¬·Ö±ð»¯¼òÁ½Ö±Ïß·½³ÌµÄÒ»´ÎÏîϵÊýÓë³£ÊýÏîÖ®±ÈµÄ½á¹û£¬´Ó¶øµÃµ½Á½ÌõÖ±Ïßl1£º£¨sin2A£©x+£¨sinA£©y-a=0£¬l2£º£¨sin2B£©x+£¨sinC£©y-c=0µÄλÖùØϵ£®
½â´ð£º½â£º£¨1£©ÉèÔ²CµÄÔ²ÐÄΪC£¨x£¬y£©£¬
ÒÀÌâÒâÔ²µÄ°ë¾¶ r=
£¬
¡ßÔ²CÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
¡à|y|2+a2=r2£¬
¹Êx2+£¨y-a£©2=|y|2+a2£¬
¡àx2=2ay£¬
¡àÔ²CµÄÔ²ÐĵĹ켣·½³ÌΪx2=2ay£®
£¨2£©Éè¡ÏMAN=¦È£¬
|AM|=m£¬|AN|=n£¬|MN|=2a£¬
¡àm2+n2-2m•n•cos¦È=4a2£¬
¡ßS¡÷MAN=
mnsin¦È=
•a•2a£¬
¡à
=2cos¦È+2sin¦È=2
sin(¦È+
)¡Ü2
£¬
µ±¦È=
ʱ£¬
+
È¡×î´óÖµ2
£¬
¡ß¡ÏMCN=2¡ÏMAN=
£¬
¡àµãCµÄ×ø±êΪ(¡À
a£¬a)£¬
¹Ê
+
µÄ×î´óֵΪ2
£¬
´ËʱԲCµÄ·½³ÌΪ(x-
a)2+(y-a)2=2a2£¬
»ò(x+
a)2+(y-a)2=2a2£®
ÓÉÒÑÖª2lgsinB=lgsinA+lgsinC£¬µÃ lg£¨sinB£©2=lg£¨sinA•sinC£©£®
¡àsin2B=sinA•sinC£®
Éèl1£ºa1x+b1y+c1=0£¬l2£ºa2x+b2y+c2=0£®
¡ß
=
=
=
£¬
=
£¬
=
=
=
£¬
¡à
=
=
£¬
¡àl1Óël2Öغϣ¬
¹ÊÑ¡A£®
ÒÀÌâÒâÔ²µÄ°ë¾¶ r=
x2+(y-a)2 |
¡ßÔ²CÔÚxÖáÉϽصõÄÏÒMNµÄ³¤Îª2a£®
¡à|y|2+a2=r2£¬
¹Êx2+£¨y-a£©2=|y|2+a2£¬
¡àx2=2ay£¬
¡àÔ²CµÄÔ²ÐĵĹ켣·½³ÌΪx2=2ay£®
£¨2£©Éè¡ÏMAN=¦È£¬
|AM|=m£¬|AN|=n£¬|MN|=2a£¬
¡àm2+n2-2m•n•cos¦È=4a2£¬
¡ßS¡÷MAN=
1 |
2 |
1 |
2 |
¡à
n |
m |
2 |
¦Ð |
4 |
2 |
µ±¦È=
¦Ð |
4 |
m |
n |
n |
m |
2 |
¡ß¡ÏMCN=2¡ÏMAN=
¦Ð |
2 |
¡àµãCµÄ×ø±êΪ(¡À
2 |
¹Ê
m |
n |
n |
m |
2 |
´ËʱԲCµÄ·½³ÌΪ(x-
2 |
»ò(x+
2 |
ÓÉÒÑÖª2lgsinB=lgsinA+lgsinC£¬µÃ lg£¨sinB£©2=lg£¨sinA•sinC£©£®
¡àsin2B=sinA•sinC£®
Éèl1£ºa1x+b1y+c1=0£¬l2£ºa2x+b2y+c2=0£®
¡ß
a1 |
a2 |
sin2A |
sin2B |
sin2A |
sinAsinC |
sinA |
sinC |
b1 |
b2 |
sinA |
sinC |
c1 |
c2 |
-a |
-c |
-2RsinA |
-2RsinC |
sinA |
sinC |
¡à
a1 |
a2 |
b1 |
b2 |
c1 |
c2 |
¡àl1Óël2Öغϣ¬
¹ÊÑ¡A£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮±¾Ì⿼²éµÈ²îÊýÁеÄÐÔÖÊ£¬Á½Ö±ÏßλÖùØϵµÄÅж¨·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿