题目内容

【题目】为实数,函数

1)若函数是偶函数,求实数的值;

2)若,求函数的最小值;

3)对于函数,在定义域内给定区间,如果存在,满足,则称函数是区间上的平均值函数是它的一个均值点.如函数上的平均值函数,就是它的均值点.现有函数是区间上的平均值函数,求实数的取值范围.

【答案】1;(2;(3

【解析】

试题(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为存在,使得从而转化为一元二次方程有解问题.

试题解析:解:(1是偶函数,上恒成立,

,所以

2)当时,

所以上的最小值为

上的的最小值为f)=

因为5,所以函数的最小值为

3)因为函数是区间上的平均值函数,

所以存在,使

,存在,使得

即关于的方程内有解;

解得所以

的取值范围是

练习册系列答案
相关题目

【题目】月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019COVID-19),简称“新冠肺炎”,下图是日至日累计确诊人数随时间变化的散点图.

为了预测在未采取强力措施下,后期的累计确诊人数,建立了累计确诊人数与时间变量的两个回归模型,根据日至日的数据(时间变量的值依次)建立模型

参考数据:其中

1)根据散点图判断,哪一个适宜作为累计确诊人数与时间变量的回归方程类型?(给出判断即可,不必说明理由);

2)根据(1)的判断结果及附表中数据,建立关于的回归方程;

3)以下是日至日累计确诊人数的真实数据,根据(2)的结果回答下列问题:

时间

累计确诊人数的真实数据

i)当日至日这天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于则认为模型可靠,请判断(2)的回归方程是否可靠?

ii日在人民政府的强力领导下,全国人民共同取了强力的预防“新冠肺炎”的措施,若采取措施天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?并说明理由.

附:对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网