题目内容

4.如图所示,足球门左右门柱分别立在A、B处,假定足球门宽度AB为7米,在距离右门柱15米的C处,一球员带球沿与球门线AC成28°角的CD方向以平均每秒6.5米的速度推进,2秒后到达D处射门.问:
(1)D点到左右门柱的距离分别为多少米?
(2)此时射门张角θ为多少?(注:cos28°≈$\frac{23}{26}$)

分析 (1)求出CD,利用余弦定理,求出BD,AD;
(2)利用余弦定理,即可求出此时射门张角θ.

解答 解:(1)由题意,CD=13米,
∴BD=$\sqrt{1{3}^{2}+1{5}^{2}-2×13×15×\frac{23}{26}}$=7米,
AD=$\sqrt{1{3}^{2}+2{2}^{2}-2×13×22×\frac{23}{26}}$=$\sqrt{147}$=7$\sqrt{3}$米,
(2)cosθ=$\frac{49+147-49}{2×7×7\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,∴θ=60°.

点评 本题考查利用数学知识解决实际问题,考查余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网