题目内容
【题目】如图,平面平面,其中为矩形,为梯形,,,.
(Ⅰ)求证:平面;
(Ⅱ)若二面角的平面角的余弦值为,求的长.
【答案】(1)见解析;(2)AB=.
【解析】分析:(Ⅰ)由线面垂直的性质可得平面,从而得,结合,利用线面垂直的判定定理可得平面;(Ⅱ)设,以为原点,所在的直线分别为轴,轴建立空间直角坐标系,平面ABF的法向量可取,利用向量垂直数量积为零列方程组求得平面的法向量),利用空间向量夹角余弦公式可得结果.
详解:(Ⅰ)平面平面,且为矩形,
平面,
又平面, ,
又且
平面.源:Z+xx+k.Com]
(Ⅱ)设AB=x.以F为原点,AF,FE所在的直线分别为x轴,y轴建立空间直角坐标系.则F(0,0,0),A(-2,0,0),E(0,,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).
因为EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).
设=(x1,y1,z1)为平面BFD的法向量,则
所以,可取=(,1,).
因为cos<,>==,得x=,所以AB=.
练习册系列答案
相关题目