题目内容
4、对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( )
分析:分x≥1和x<1两种情况对(x-1)f′(x)≥0进行讨论,由极值的定义可得当x=1时f(x)取得最小值,故问题得证.
解答:解:依题意,当x≥1时,f′(x)≥0,函数f(x)在(1,+∞)上是增函数;
当x<1时,f′(x)≤0,f(x)在(-∞,1)上是减函数,
故当x=1时f(x)取得最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).
故选C.
当x<1时,f′(x)≤0,f(x)在(-∞,1)上是减函数,
故当x=1时f(x)取得最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).
故选C.
点评:本题以解不等式的形式,考查了利用导数求函数极值的方法,同时灵活应用了分类讨论的思想,是一道好题.
练习册系列答案
相关题目
对于R上可导的任意函数f(x),若满足(x-2)f′(x)≤0,则必有( )
A、f(-3)+f(3)<2f(2) | B、f(-3)+f(7)>2f(2) | C、f(-3)+f(3)≤2f(2) | D、f(-3)+f(7)≥2f(2) |