题目内容
9、对于R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有( )
分析:根据已知题意,解(x-a)f′(x)≥0;然后根据f'(x)的符号判断f(x)的单调性,继而确定最小值,得到f(x)与f(a)的关系.
解答:解:根据题意,对于R上可导的任意函数f(x),若满足(x-a)f′(x)≥0
当x≥a时,x-a≥0
∴此时f'(x)≥0
即,当x≥a时,f(x)为增函数.
当x<a时,x-a<0
∴此时f'(x)<0
即,当x<a时,f(x)为减函数.
综上,x=a时,f(x)取最小值f(a)
∴f(x)≥f(a)
故选A
当x≥a时,x-a≥0
∴此时f'(x)≥0
即,当x≥a时,f(x)为增函数.
当x<a时,x-a<0
∴此时f'(x)<0
即,当x<a时,f(x)为减函数.
综上,x=a时,f(x)取最小值f(a)
∴f(x)≥f(a)
故选A
点评:本题考查函数的导数与单调性的关系.通过函数的导数,确定单调性,再根据x=a两侧的单调性得出结论.属于中档题.
练习册系列答案
相关题目
对于R上可导的任意函数f(x),若满足(x-2)f′(x)≤0,则必有( )
A、f(-3)+f(3)<2f(2) | B、f(-3)+f(7)>2f(2) | C、f(-3)+f(3)≤2f(2) | D、f(-3)+f(7)≥2f(2) |