题目内容
【题目】在某校矩形的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在范围内,规定分数在80以上(含80)的同学获奖,按文理科用分层抽样的放发抽取200人的成绩作为样本,得到成绩的频率分布直方图.
(Ⅰ)填写下面的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”;
(Ⅱ)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为,求的分布列及数学期望.
附表及公式:,其中
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】
列出表格根据公式计算出,对照临界值得到结论
由表中数据可知抽到获奖学生的概率为,将频率视为概率,所以可能取,且,计算对应的概率值,写出的分布列,计算数学期望值
(Ⅰ)联表如下:
由表中数据可得:
所以有超过 95%的把握认为“获奖与学生的文理科有关”
(Ⅱ)由表中数据可知,抽到获奖学生的概率为
将频率视为概率,所以可取且
期望.
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据求下面22列联表中的的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
月收入低于55百元的人数 | 月收入不低于55百元的人数 | 合计 | |
赞成 | a | b | |
不赞成 | c | d | |
合计 | 50 |
(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为,求的概率.
附:,
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |