题目内容
【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
【答案】A
【解析】解:∵定义域为(0,+∞)的单调函数f(x)
满足f[f(x)+log x]=4,
∴必存在唯一的正实数a,
满足f(x)+log x=a,f(a)=4,①
∴f(a)+log a=a,②
由①②得:4+log a=a,log a=a﹣4,
a=( )a﹣4,左增,右减,有唯一解a=3,
故f(x)+log x=a=3,
f(x)=3﹣log x,
由方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,
即有|log x|=x3﹣6x2+9x﹣4+a,
由g(x)=x3﹣6x2+9x﹣4+a,g′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
当1<x<3时,g′(x)<0,g(x)递减;当0<x<1时,g′(x)<0,g(x)递增.
g(x)在x=1处取得最大值a,g(0)=a﹣4,g(3)=a﹣4,
分别作出y=|log x|,和y=x3﹣6x2+9x﹣4的图象,可得
两图象只有一个交点,将y=x3﹣6x2+9x﹣4的图象向上平移,
至经过点(3,1),有两个交点,
由g(3)=1即a﹣4=1,解得a=5,
当0<a≤5时,两图象有两个交点,
即方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解.
故选:A.
由题设知必存在唯一的正实数a,满足f(x)+log x=a,f(a)=4,f(a)+log a=a,故4+log a=a,log a=a﹣4,a=( )a﹣4,左增,右减,有唯一解a=3,故f(x)+log x=a=3,由题意可得|log x|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,讨论g(x)=x3﹣6x2+9x﹣4+a的单调性和最值,分别画出作出y=|log x|,和y=x3﹣6x2+9x﹣4的图象,通过平移即可得到a的范围.
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.