题目内容
【题目】已知点F1为椭圆1(a>b>0)的左焦点,在椭圆上,PF1⊥x轴.
(1)求椭圆的方程;
(2)已知直线l:y=kx+m与椭圆交于(1,2),B两点,O为坐标原点,且OA⊥OB,O到直线l的距离是否为定值?若是,求出该定值;若不是,请说明理由.
【答案】(1)(2)是定值,定值为
【解析】
(1)由PF1⊥x轴可得c=1,即可得椭圆的左右焦点的坐标,由椭圆的定义求出a的值,由a,b,c的关系求出a,b的值,进而求出椭圆的方程;
(2)将直线l与椭圆的方程联立求出两根之积,由OA⊥OB,可得0,可得k,m的关系,求出原点到直线的距离的表达式,可得为定值.
(1)令焦距为2,依题意可得F1(﹣1,0),右焦点F2(1,0),
,所以,
所以椭圆方程为;
(2)设A(x1,y1),B(x2,y2),
由整理可得(2k2+1)x2+4kmx+2m2﹣2=0,
.
所以y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2kmm2,
由,
得3m2=2(k2+1),
所以原点O到直线l的距离为,为定值.
练习册系列答案
相关题目