题目内容

已知f(x)=ax2+bx+c(a≠0)且方程f(x)=x无实数根,下列命题:
①方程f[f(x)]=x也一定没有实数根;
②若a>0;则不等式f[f(x)]>x对一切x都成立;
③若a<0则必存在实数x0,使f[f(x0)]>x0
④若a+b+c=0则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号是
 
.(把你认为正确命题的所有序号都填上)
考点:命题的真假判断与应用
专题:函数的性质及应用
分析:根据函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,得出函数y=ax2+bx+c与y=x的图象无交点,对选项中的命题进行分析判断,得出正确的结论.
解答: 解:∵由函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,
即y=ax2+bx+c与y=x的图象无交点,
∴①函数y=f[f(x)]与y=x的图象无交点,即方程f[f(x)]=x没有实数根,①正确;
②当a>0时,函数f(x)=ax2+bx+c(a≠0)的图象开口向上,与y=x无交点,
∴f(x)的图象在y=x图象的上方,
∴不等式f[f(x)]>x对一切实数x都成立,②正确;
③同理,当a<0时,函数f(x)=ax2+bx+c(a≠0)的图象在y=x的下方,
f[f(x)]<x恒成立,∴③错误;
④当a+b+c=0时,f(1)=0,结合题意知a<0,函数f(x)=ax2+bx+c(a≠0)的图象在y=x的下方,
不等式f[f(x)]<x对一切x都成立,∴④正确.
综上,正确的答案为①②④.
故答案为:①②④.
点评:本题考查了复合函数的图象与性质的应用问题,解题时应结合二次函数的图象与性质进行解答,是难理解的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网