题目内容
如图,己知平行四边形ABCD中,∠BAD=60°,AB=6,AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG.
(I)求证:平面ABFCE∥平面CGE;
(II)若平面AGEF⊥平面ABCD,求二面B-EF-A的平面角的余弦值.
(I)求证:平面ABFCE∥平面CGE;
(II)若平面AGEF⊥平面ABCD,求二面B-EF-A的平面角的余弦值.
分析:(I)证明AF∥平面CGE,AB∥平面CGE,即可证明平面ABFCE∥平面CGE;
(II)FG⊥平面ABCD,BG⊥平面AGEF,作GH⊥EF交EF于H,连BH,则BH⊥EF,从而可知∠BHG为二面B-EF-A的平面角,即可求得二面角B-EF-A的平面角的余弦值.
(II)FG⊥平面ABCD,BG⊥平面AGEF,作GH⊥EF交EF于H,连BH,则BH⊥EF,从而可知∠BHG为二面B-EF-A的平面角,即可求得二面角B-EF-A的平面角的余弦值.
解答:(I)证明:∵AB∥CG,GE∥AF,
∴AF∥平面CGE,AB∥平面CGE
∵AF∩AB=A
∴平面ABFCE∥平面CGE;
(II)解:∠BAD=60°,AB=6,AD=3,G为CD中点
∴BG⊥AG,∴FG⊥AG
∵平面AGEF⊥平面ABCD,FG?平面AGEF
∴FG⊥平面ABCD,
∵BG?平面ABCD
∴FG⊥BG
∵AG∩FG=G
∴BG⊥平面AGEF
作GH⊥EF交EF于H,连BH,则BH⊥EF
∴∠BHG为二面B-EF-A的平面角
∵BG=3,GH=
,∴tan∠BHG=
=
∴cos∠BHG=
∴二面角-EF-A的平面角的余弦值为
.
∴AF∥平面CGE,AB∥平面CGE
∵AF∩AB=A
∴平面ABFCE∥平面CGE;
(II)解:∠BAD=60°,AB=6,AD=3,G为CD中点
∴BG⊥AG,∴FG⊥AG
∵平面AGEF⊥平面ABCD,FG?平面AGEF
∴FG⊥平面ABCD,
∵BG?平面ABCD
∴FG⊥BG
∵AG∩FG=G
∴BG⊥平面AGEF
作GH⊥EF交EF于H,连BH,则BH⊥EF
∴∠BHG为二面B-EF-A的平面角
∵BG=3,GH=
3
| ||
2 |
BG |
GH |
2
| ||
3 |
∴cos∠BHG=
| ||
7 |
∴二面角-EF-A的平面角的余弦值为
| ||
7 |
点评:本题考查面面平行,考查面面角,解题的关键是熟练掌握面面平行的判定,正确作出面面角.
练习册系列答案
相关题目