题目内容

1.已知下列各组命题,其中p是q的充分必要条件的是(  )
A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点
B.p:$\frac{f(-x)}{f(x)}$=1;q:y=f(x)是偶函数
C.p:cos α=cos β;q:tan α=tan β
D.p:A∩B=A;q:A⊆U,B⊆U,∁UB⊆∁UA

分析 A.若命题q为真命题:可得△>0,解得m>6或m<-2,即可判断出;
B.若命题q是真命题:y=f(x)是偶函数,则f(-x)=f(x),可得p⇒q,反之不成立;
C.对于命题p:取α=β=$\frac{π}{2}$,满足cosα=cosβ;而q:tanα=tanβ无意义.反之也不成立,例如取α=$\frac{5π}{4}$,β=$\frac{π}{4}$,满足tanα=tanβ,而cosα=cosβ不成立.即可判断出
D.由A∩B=A?A⊆B?A⊆U,B⊆U,∁UB⊆∁UA,即可判断出.

解答 解:A.若命题q为真命题:则△=m2-4(m+3)>0,解得m>6或m<-2,∴命题p是q的必要不充分条件;
B.若命题q是真命题:y=f(x)是偶函数,则f(-x)=f(x),∴由p⇒q,反之不成立,因此p是q的充分不必要条件;
C.对于命题p:取α=β=$\frac{π}{2}$满足cosα=cosβ;而q:tanα=tanβ无意义.反之也不成立,例如取α=$\frac{5π}{4}$,β=$\frac{π}{4}$,满足tanα=tanβ,而cosα=cosβ不成立.因此p是q的既不充分也不必要条件;
D.由A∩B=A?A⊆B?A⊆U,B⊆U,∁UB⊆∁UA,满足p是q的充分必要条件.
故选:D.

点评 本题考查了函数与集合的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网