题目内容
【题目】过抛物线的焦点F且倾斜角为的直线交抛物线于AB两点,交其准线于点C,且|AF|=|FC|,|BC|=2.
(1)求抛物线C的方程;
(2)直线l交抛物线C于DE两点,且这两点位于x轴两侧,与x轴交于点M,若·求的最小值.
【答案】(1)(2)
【解析】
(1)过点、作抛物线准线的垂线,垂足为、,设准线与轴交于点,由已知可得,可得,由抛物线的定义可得,进而利用中位线的性质可求得,即可求解;
(2)联立可得,由韦达定理可得,,代入中可得,则,由,再利用均值不等式求得最值即可.
(1)设过点、的抛物线准线的垂线,垂足为、,设准线与轴交于点,
因为,,
所以,
所以,
又点为的中点,
所以,
所以,
所以抛物线的方程为:
(2)设,,,
联立可得,
所以,,
所以,
所以或(舍去),
所以,即,所以,
所以,
当且仅当,即时等号成立,
所以的最小值为.
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | |||||||
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | ||||||
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.
(1)求的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) | |||||
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.