题目内容
【题目】函数f(x)=x2﹣2x+2在区间(0,4]的值域为( )
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]
【答案】B
【解析】解:函数f(x)=x2﹣2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2﹣2x+2在区间(0,1]为减函数,在[1,4]上为增函数,
故当x=1时,函数f(x)取最小值1;
当x=4时,函数f(x)取最大值10;
故函数f(x)=x2﹣2x+2在区间(0,4]的值域为[1,10],
故选:B.
根据函数图象,分析函数在区间(0,4]的单调性,进而求出在区间(0,4]的最值,可得在区间(0,4]的值域.
练习册系列答案
相关题目
【题目】某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有
第一节 | 第二节 | 第三节 | 第四节 |
地理B层2班 | 化学A层3班 | 地理A层1班 | 化学A层4班 |
生物A层1班 | 化学B层2班 | 生物B层2班 | 历史B层1班 |
物理A层1班 | 生物A层3班 | 物理A层2班 | 生物A层4班 |
物理B层2班 | 生物B层1班 | 物理B层1班 | 物理A层4班 |
政治1班 | 物理A层3班 | 政治2班 | 政治3班 |
A. 8种B. 10种C. 12种D. 14种