题目内容

在直角坐标系中,曲线的参数方程为 (为参数) 上的动点,点满足点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

(1)  (α为参数) ; (2) |AB|=|ρ2-ρ1|=2.

解析试题分析:(1)设P(x,y),则由条件知M
由于M点在C1上,所以
从而C2的参数方程为 (α为参数)               5分
(2)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ=与C1的交点A的极径为ρ1=4sin
射线θ=与C2的交点B的极径为ρ2=8sin.
所以|AB|=|ρ2-ρ1|=2.                         10分
考点:本题主要考查平面向量的线性运算,极坐标的应用,参数方程的求法,直线与圆的位置关系。
点评:中档题,确定参数方程的过程中, 利用了“代入法”。利用极坐标方程,确定线段的长度,令人耳目一新。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网