题目内容
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.
附: .
【答案】(Ⅰ)表格如解析所示,没有95%的把握认为市民是否购买该款手机与年龄有关;(Ⅱ)X的分布列如解析所示,期望为 .
【解析】试题分析:(Ⅰ)根据茎叶图可填表格,再由公式计算,并且和比较大小,即可得出结论;(Ⅱ)根据层比为,分别得到年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,分别对这人分类标号,并通过列举法计算出所有可能出现的情况,即可求出X的分布列和期望值.
试题解析:(Ⅰ)由茎叶图可得:
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | 20 | 8 | 28 |
大于40岁 | 10 | 12 | 22 |
合计 | 30 | 20 | 50 |
由列联表可得: ,
所以,没有95%的把握认为市民是否购买该款手机与年龄有关.
(Ⅱ)购买意愿弱的市民共有20人,抽样比例为,
所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,
则X的可能取值为0,1,2,
,
所以分布列为
X | 0 | 1 | 2 |
P |
数学期望为.
练习册系列答案
相关题目