题目内容
【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为 ?若存在,求出 的值;若不存在,请说明理由.
【答案】
(1)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.
又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,
所以PO⊥平面ABCD
(2)解:连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(1)知PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB= ,
在Rt△POA中,因为AP= ,AO=1,所以OP=1,
在Rt△PBO中,PB= ,所以cos∠PBO= ,
所以异面直线PB与CD所成的角的余弦值为
(3)解:假设存在点Q,使得它到平面PCD的距离为 .
设QD=x,则S△DQC= x,由(2)得CD=OB= ,
在Rt△POC中,PC= ,
所以PC=CD=DP,S△PCD= = ,
由Vp﹣DQC=VQ﹣PCD,得x= ,所以存在点Q满足题意,此时 = .
【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp﹣DQC=VQ﹣PCD , 即可得出结论.
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.
附: .