题目内容
【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意的x∈[0,m],f(x)≥1恒成立,求m的最大值.
【答案】(I)(II)
【解析】
(Ⅰ)由图象可知,A=2.可求函数的周期,利用周期公式可求ω的值,又函数f(x)的图象经过点,可得,结合范围,可求,即可得解函数解析式;(Ⅱ)由x∈[0,m],可得:,根据正弦函数的单调性,分类讨论即可得解m的最大值.
(Ⅰ)由图象可知,A=2.
因为,
所以T=π.
所以.解得ω=2.
又因为函数f(x)的图象经过点,
所以.
解得.
又因为,
所以.
所以.
(Ⅱ)因为 x∈[0,m],
所以,
当时,即时,f(x)单调递增,
所以f(x)≥f(0)=1,符合题意;
当时,即时,f(x)单调递减,
所以,符合题意;
当时,即时,f(x)单调递减,
所以,不符合题意;
综上,若对于任意的x∈[0,m],有f(x)≥1恒成立,则必有,
所以m的最大值是.
【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,年月日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除元②子女教育费用:每个子女每月扣除元
新个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 | 四级 | |
每月应纳税所得额(含税) | 不超过元的部分 | 超过元至元的部分 | 超过元至元的部分 | 超过元至元的部分 | |
税率 |
(1)现有李某月收入元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?
(2)现收集了某城市名年龄在岁到岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有人,没有孩子的有人,有一个孩子的人中有人需要赡养老人,没有孩子的人中有人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的人中,任何两人均不在一个家庭).若他们的月收入均为元,试求在新个税政策下这名公司白领的月平均缴纳个税金额为多少?