题目内容

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若时,求二面角的余弦值.

(1)证明过程详见解析;(2)

解析试题分析:本题主要考查线线垂直、线面垂直、面面垂直、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,连结OC,由于为等腰三角形,O为AB的中点,所以,利用面面垂直的性质,得平面ABEF,利用线面垂直的性质得,由线面垂直的判定得平面OEC,所以,所以线面垂直的判定得平面,最后利用线面垂直的性质得;第二问,利用向量法,先建立空间直角坐标系,求出平面FCE和平面CEB的法向量,再利用夹角公式求二面角的余弦值,但是需要判断二面角是锐角还是钝角.
试题解析:(1)证明:连结OC,因AC=BC,O是AB的中点,故
又因平面ABC平面ABEF,故平面ABEF,     2分
于是.又,所以平面OEC,所以,     4分
又因,故平面,所以.     6分
(2)由(1),得,不妨设,取EF的中点D,以O为原点,OC,OB,OD所在的直线分别为x,y,z轴,建立空间直角坐标系,设,则
在的直线分别为轴,建立空间直角坐标系,
从而设平面的法向量,由,得,                    9分
同理可求得平面的法向量,设的夹角为,则,由于二面角为钝二面角,则余弦值为                            13分
考点:线线垂直、线面垂直、面面垂直、向量法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网