题目内容
12.已知f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}$则f(3)=3;当1≤x≤2时,f(x)=-3x2+10x-6.分析 由分段函数的性质,逐个代入求值可得.
解答 解:∵f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}$,
∴f(3)=f(2)+1=f(1)+1+1
=f(0)+1+1+1=3;
当1≤x≤2时,f(x)=f(x-1)+1,
=-3(x-1)2+4(x-1)+1
=-3x2+10x-6,
故答案为:3;-3x2+10x-6.
点评 本题考查分段函数求值,属基础题.
练习册系列答案
相关题目
3.i为虚数单位,$\frac{i}{3+4i}$=( )
A. | 3+4i | B. | 4+3i | C. | $\frac{4}{25}$-$\frac{3}{25}$i | D. | $\frac{4}{25}$+$\frac{3}{25}$i |
17.某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
优秀 | 非优秀 | 总计 | |
课改班 | 50 | ||
非课改班 | 20 | 110 | |
合计 | 210 |
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
4.已知某空间几何体的三视图如右图所示,则该几何体的体积是( )
A. | 16 | B. | 32 | C. | 32 | D. | 48 |
17.已知M=$\frac{{C}_{2015}^{0}}{1}$+$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2015}^{2}}{3}$+…+$\frac{{C}_{2015}^{2014}}{2015}$+$\frac{{C}_{2015}^{2015}}{2016}$,则M=( )
A. | $\frac{{2}^{2016}-1}{2016}$ | B. | $\frac{{2}^{2016}}{2016}$ | C. | $\frac{{2}^{2015}-1}{2015}$ | D. | $\frac{{2}^{2015}}{2015}$ |