题目内容

【题目】已知函数R上的偶函数,且当x>0时,函数的解析式为= .

(1)判断并证明(0,+∞)上的单调性;

(2):x<0时,函数的解析式.

【答案】(1)详见解析;(2) .

【解析】试题分析:用定义证明函数的单调性需要以下步骤,一、取值,在x>0内任取两个自变量,且 ,二、作差,三、变形(包括通分、配方、因式分解、分子有理化等),四、断号(判断各部分的正负,说明差的符号正负),最后给出结论.利用函数的奇偶性求函数的解析式是函数的奇偶性的应用之一,给出函数在x>0的解析式,利用当x<0时,-x>0,借助f(x)=f(-x)就可以求出x<0时的解析式;

试题解析:

(1)当时,

上减函数

证明:

上减函数.

时,

R上偶函数

时, .

点精函数的单调性的判断分为“粗判”和“细断”两种,所谓粗判,就是根据已知函数的单调性结合和复合函数关系,判断出函数在某区间上的单调性;所谓细断就是根据函数的单调性定义进行严格证明或利用导数的正负进行严格的判断,关于利用函数的单调性的定义证明,其步骤为①取值,②作差,③变形,④断号,最后给出单调性结论. 利用函数的奇偶性求函数的解析式是函数的奇偶性的应用之一,给出函数在x>0的解析式,利用当xlt;0时,-x>0,偶函数借助f(x)=f(-x)就可以求出x<0时的解析式;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网