题目内容
【题目】设f:x→|x|是集合A到集合B的映射.若A={﹣2,0,2},则A∩B=( )
A.{0}
B.{2}
C.{0,2}
D.{﹣2,0}
【答案】C
【解析】解:因为f:x→|x|是集合A到集合B的映射,
集合A的元素分别为﹣2,0,2,且|﹣2|=2,|2|=2,|0|=0,
所以集合B={0,2},又A={﹣2,0,2},
所以A∩B={0,2},
故选C.
【考点精析】利用映射的相关定义对题目进行判断即可得到答案,需要熟知对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象;注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数.
【题目】甲、乙两校体育达标抽样测试,两校体育达标情况抽检,其数据见下表:
达标人数 | 未达标人数 | 合计 | |
甲校 | 48 | 62 | 110 |
乙校 | 52 | 38 | 90 |
合计 | 100 | 100 | 200 |
若要考察体育达标情况与学校是否有关系最适宜的统计方法是( )
A.回归分析
B.独立性检验
C.相关系数
D.平均值
【题目】某商场拟对商品进行促销,现有两种方案供选择.每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,顶计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4.第二个月销量是笫一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令ξi(i=1,2)表示实施方案i的第二个月的销量是促销前销量的倍数.
(Ⅰ)求ξ1 , ξ2的分布列:
(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.
销量倍数 | ξi≤1.7 | 1.7<ξi<2.3 | ξi2.3 |
利润(万元) | 15 | 20 | 25 |