题目内容
【题目】已知动点 到点
的距离比它到直线
的距离小
,记动点
的轨迹为
.若以
为圆心,
为半径(
)作圆,分别交
轴于
两点,连结并延长
,分别交曲线
于
两点.
(1)求曲线 的方程;
(2)求证:直线 的斜率为定值.
【答案】
(1)解:动点 到点
的距离比它到直线
的距离小
,可得动点
到点
的距离与它到直线
的距离相等,由定义可得曲线
方程为
(2)解:设 ,
与抛物线方程
联立得:
,
由题意有 ,
【解析】本题考查抛物线方程的求法,考查两直线的斜率的比值是否为定值的判断与求法,解题时要认真审题,注意直线方程的合理运用.
【考点精析】认真审题,首先需要了解抛物线的定义(平面内与一个定点和一条定直线
的距离相等的点的轨迹称为抛物线.定点
称为抛物线的焦点,定直线
称为抛物线的准线).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
月用水量范围(单位:立方米) | (0,10] | (10,15] | (15,+∞) |
从本市随机抽取了10户家庭,统计了同一个月的用水量,得到如图所示的茎叶图.
(1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值;
(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n户月用水量为第二阶梯水量的可能性最大,求出n的值.