题目内容
【题目】著名英国数字家和物理字家lssacNewton曾提出了物体在常温环境下温度变化的冷却模型:把物体放在冷空气中冷却,如果物体的初始温度为,空气的温度为分钟后物体的温度可甶公式得到,这里是自然对数的底,是一个由物体与空气的接触状況而定的正的常数,先将一个初始温度为62的物体放在15的空气中冷却,1分钟后物体的温度是52.
(1)求的值(精确到0.01);
(2)该物体从最初的62冷却多少分钟后温度是32(精确到0.1)?
【答案】(1)0.24;(2)4.2
【解析】
(1)将代入中,便可求得值;
(2)将代入计算即可。
将代入中,得
,所以
两边取对数得:。
又,所以,
(2)由已知得,所以,
即
当时,
所以物体从最初的62冷却约分钟后温度是32。
【题目】已知下表为函数部分自変量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
据表中数据,研究该函数的一些性质;
(1)判断函数的奇偶性,并证明;
(2)判断函数在区间[0.55,0.6]上是否存在零点,并说明理由;
(3)判断的正负,并证明函数在上是单调递减函数.
【题目】某校有150名学生参加了中学生环保知识竞赛,为了解成绩情况,现从中随机抽取50名学生的成绩进行统计(所有学生成绩均不低于60分).请你根据尚未完成的频率分布表,解答下列问题:
(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.
分组 | 频数 | 频率 | |
第1组 | [60,70) | M | 0.26 |
第2组 | [70,80) | 15 | p |
第3组 | [80,90) | 20 | 0.40 |
第4组 | [90,100] | N | q |
合计 | 50 | 1 |