题目内容
如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,,M是CC1的中点,N是BC的中点,点P在A1B1上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC所成的角最大?并求该角最大值的正切值;
(II)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置。
|
【答案】
解:(I)如图,以AB,AC,AA1分别为轴,建立空间直角坐标系
则 2分
从而
|
所以 3分
(II)平面ABC的一个法向量为
则
(※) 5分
而
由(※)式,当 6分
(III)平面ABC的一个法向量为
设平面PMN的一个法向量为
由(I)得
由 7分
解得 9分
平面PMN与平面ABC所成的二面角为45°,
解得 11分
故点P在B1A1的延长线上,且 12分
练习册系列答案
相关题目