题目内容
【题目】对某电子元件进行寿命追踪调查,情况如下.
寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个 数 | 20 | 30 | 80 | 40 | 30 |
(1)列出频率分布表,并画出频率分布直方图;
(2)从频率分布直方图估计出电子元件寿命的众数、中位数分别是多少?
【答案】(1)样本频率分布表和频率分布直方图见解析;(2).
【解析】
试题分析:(1)根据寿命追踪调查表,画出样本频率分布表,根据频率分布表,画出频率分布直方图;(2)从频率分布直方图可看出众数为,由频率分布直方图面积的一半所对应的值为中位数.
试题解析:解:(1)样本频率分布表如下.
寿命(h) | 频 数 | 频 率 |
100~200 | 20 | 0.10 |
200~300 | 30 | 0.15 |
300~400 | 80 | 0.40 |
400~500 | 40 | 0.20 |
500~600 | 30 | 0.15 |
合 计 | 200 | 1.00 |
(2)频率分布直方图如下.
(2)从频率分布直方图可以看出电子元件寿命的众数是350
中位数为:
练习册系列答案
相关题目
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程(其中已计算出);
(2)若由线性回归方程得到的估计数据与所选出的检验数据(选取的检验数据是12月1日与12月5日的两组数据)的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?