题目内容

平行六面体ABCD-A1B1C1D1中,
AB
=
a
AD
=
b
AA1
=
c
,E,F为BD1,B1C1的中点,则
EF
a
b
c
可表示为(  )
A.
1
2
a
-
b
+
1
2
c
B.
1
2
a
+
1
2
c
C.-
1
2
a
+
1
2
c
D.
1
2
a
-
1
2
c

平行六面体ABCD-A1B1C1D1中,
AB
=
a
AD
=
b
AA1
=
c

且E,F为BD1,B1C1的中点,
EF
=
EB
+
BB1
+
B1F

=
1
2
D1B
+
AA1
+
1
2
B1C1

=
1
2
D1D
+
DB
)+
c
+
1
2
AD

=
1
2
A1A
+
DA
+
AB
)+
c
+
1
2
b

=
1
2
(-
c
-
b
+
a
)+
c
+
1
2
b

=
1
2
a
+
1
2
c

故选:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网