题目内容
已知点![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_ST/1.png)
【答案】分析:由三角形的对称性,先找出其外接圆圆心在X轴上,再求出半径,进而求出面积及其极限值.
解答:解:由题意可知外接圆圆心在X轴上,可设为O(a,0),则OA=OC,即OA2=OC2
∴
,
解得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/1.png)
∴O为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/2.png)
∴圆O的半径为OA=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/4.png)
∴其外接圆的面积Sn=
═![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/6.png)
∴
=4π.
故答案是4π.
点评:本题的解答过程中,注意到先根据三角形的对称性找出外接圆圆心坐标,再进一步求解.
解答:解:由题意可知外接圆圆心在X轴上,可设为O(a,0),则OA=OC,即OA2=OC2
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/0.png)
解得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/1.png)
∴O为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/2.png)
∴圆O的半径为OA=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/4.png)
∴其外接圆的面积Sn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212753616366775/SYS201310232127536163667010_DA/7.png)
故答案是4π.
点评:本题的解答过程中,注意到先根据三角形的对称性找出外接圆圆心坐标,再进一步求解.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目