ÌâÄ¿ÄÚÈÝ
18£®ÔÚÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÔÙÁîan=lgTn£¬n¡Ý1£®£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Tn=Sn-$\frac{1}{{S}_{n}}$£¬ÇóTnµÄ×î´óÏîºÍ×îСÏ
·ÖÎö £¨1£©ÓÉÌâÒ⣬Êý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÓɵȱÈÊýÁеÄÐÔÖÊÒ×µÃTn=${100}^{\frac{n+2}{2}}$£¬´úÈëan=lgTn£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©Çó³öbnµÄ±í´ïʽ£¬ÌÖÂÛnΪÆæÊýºÍżÊý¶ÔÓ¦µÄÇ°nÏîºÍΪSn£¬¼´¿ÉÇóTnµÄ×î´óÏîºÍ×îСÏ
½â´ð ½â£º£¨1£©¡ßÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬
¡àÓɵȱÈÊýÁеÄÐÔÖÊ£¬ÐòºÅµÄºÍÏàµÈ£¬ÔòÏîµÄ³Ë»ýÒ²ÏàµÈÖªTn=${100}^{\frac{n+2}{2}}$£¬
ÓÖan=lgTn£¬£¨n¡ÊN*£©£¬
¡àan=lgTn=lg${100}^{\frac{n+2}{2}}$=lg10n+2=n+2£®
£¨2£©bn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$=£¨-1£©n-1•$\frac{{a}_{2n-1}+{a}_{2n+1}}{{a}_{2n-1}•{a}_{2n+1}}$=£¨-1£©n-1•£¨$\frac{1}{{a}_{2n+1}}$+$\frac{1}{{a}_{2n-1}}$£©£¬
µ±n=2kʱ£¬Sn=1+$\frac{1}{3}-£¨\frac{1}{3}+\frac{1}{5}£©$+£¨$\frac{1}{5}$+$\frac{1}{7}$£©+¡+£¨$\frac{1}{2n+1}$+$\frac{1}{2n+3}$£©=1-$\frac{1}{2n+3}$=$\frac{2n+2}{2n+3}$£¬
µ±n=2k-1ʱ£¬Sn=S2K-bn+1=1+$\frac{1}{2n+3}$=$\frac{2n+4}{2n+3}$£¬
¡àSn=$\left\{\begin{array}{l}{\frac{2n+2}{2n+3}£¬}&{nΪżÊý}\\{\frac{2n+4}{2n+3}£¬}&{nΪÆæÊý}\end{array}\right.$£¬
Ôòµ±nΪżÊýʱ£¬Tn=Sn-$\frac{1}{{S}_{n}}$=$\frac{2n+2}{2n+3}-\frac{2n+3}{2n+2}$=$\frac{-4n-5}{£¨2n+3£©£¨2n+2£©}$Ϊ¼õº¯Êý£¬¡à×î´óֵΪ${T}_{1}=-\frac{9}{20}$£¬
µ±nΪÆæÊýʱ£¬TnΪÔöº¯Êý£¬×îСֵΪT1=$\frac{11}{30}$£®
µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎյȲîÊýÁÐÓëµÈ±ÈÊýÁеÄÐÔÖÊ£¬ÔÙ½áºÏ¶ÔÊýµÄÔËÓÃÐÔÖʵóöÇó³öÊýÁÐ{an}µÄͨÏʽ£¬±¾Ì⿼²éÁË×ÛºÏÀûÓÃ֪ʶת»¯±äÐεÄÄÜÁ¦£®
A£® | f£¨x£©=$\root{5}{{x}^{5}}$Óëf£¨x£©=$\sqrt{{x}^{2}}$ | B£® | y=xÓë$y=\root{3}{x^3}$ | ||
C£® | $y=\frac{£¨x-1£©£¨x+3£©}{x-1}$Óëy=x+3 | D£® | y=1Óëy=x0 |
A£® | 70 | B£® | 130 | C£® | 140 | D£® | 210 |
A£® | tan¦ÈºÍcos¦È | B£® | cos¦ÈºÍcot¦È | C£® | sin¦ÈºÍsec¦È | D£® | cot$\frac{¦È}{2}$ºÍsin¦È |