ÌâÄ¿ÄÚÈÝ

18£®ÔÚÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÔÙÁîan=lgTn£¬n¡Ý1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$£¬ÉèÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬Tn=Sn-$\frac{1}{{S}_{n}}$£¬ÇóTnµÄ×î´óÏîºÍ×îСÏ

·ÖÎö £¨1£©ÓÉÌâÒ⣬Êý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬ÓɵȱÈÊýÁеÄÐÔÖÊÒ×µÃTn=${100}^{\frac{n+2}{2}}$£¬´úÈëan=lgTn£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©Çó³öbnµÄ±í´ïʽ£¬ÌÖÂÛnΪÆæÊýºÍżÊý¶ÔÓ¦µÄÇ°nÏîºÍΪSn£¬¼´¿ÉÇóTnµÄ×î´óÏîºÍ×îСÏ

½â´ð ½â£º£¨1£©¡ßÊý1ºÍ100Ö®¼ä²åÈën¸öʵÊý£¬Ê¹µÃÕân+2¸öÊý¹¹³ÉµÝÔöµÄµÈ±ÈÊýÁУ¬½«Õân+2¸öÊýµÄ³Ë»ý¼Ç×÷Tn£¬
¡àÓɵȱÈÊýÁеÄÐÔÖÊ£¬ÐòºÅµÄºÍÏàµÈ£¬ÔòÏîµÄ³Ë»ýÒ²ÏàµÈÖªTn=${100}^{\frac{n+2}{2}}$£¬
ÓÖan=lgTn£¬£¨n¡ÊN*£©£¬
¡àan=lgTn=lg${100}^{\frac{n+2}{2}}$=lg10n+2=n+2£®
£¨2£©bn=£¨-1£©n-1$\frac{2{a}_{2n}}{{a}_{2n-1}{a}_{2n+1}}$=£¨-1£©n-1•$\frac{{a}_{2n-1}+{a}_{2n+1}}{{a}_{2n-1}•{a}_{2n+1}}$=£¨-1£©n-1•£¨$\frac{1}{{a}_{2n+1}}$+$\frac{1}{{a}_{2n-1}}$£©£¬
µ±n=2kʱ£¬Sn=1+$\frac{1}{3}-£¨\frac{1}{3}+\frac{1}{5}£©$+£¨$\frac{1}{5}$+$\frac{1}{7}$£©+¡­+£¨$\frac{1}{2n+1}$+$\frac{1}{2n+3}$£©=1-$\frac{1}{2n+3}$=$\frac{2n+2}{2n+3}$£¬
µ±n=2k-1ʱ£¬Sn=S2K-bn+1=1+$\frac{1}{2n+3}$=$\frac{2n+4}{2n+3}$£¬
¡àSn=$\left\{\begin{array}{l}{\frac{2n+2}{2n+3}£¬}&{nΪżÊý}\\{\frac{2n+4}{2n+3}£¬}&{nΪÆæÊý}\end{array}\right.$£¬
Ôòµ±nΪżÊýʱ£¬Tn=Sn-$\frac{1}{{S}_{n}}$=$\frac{2n+2}{2n+3}-\frac{2n+3}{2n+2}$=$\frac{-4n-5}{£¨2n+3£©£¨2n+2£©}$Ϊ¼õº¯Êý£¬¡à×î´óֵΪ${T}_{1}=-\frac{9}{20}$£¬
µ±nΪÆæÊýʱ£¬TnΪÔöº¯Êý£¬×îСֵΪT1=$\frac{11}{30}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎյȲîÊýÁÐÓëµÈ±ÈÊýÁеÄÐÔÖÊ£¬ÔÙ½áºÏ¶ÔÊýµÄÔËÓÃÐÔÖʵóöÇó³öÊýÁÐ{an}µÄͨÏʽ£¬±¾Ì⿼²éÁË×ÛºÏÀûÓÃ֪ʶת»¯±äÐεÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø