题目内容

若f(n)为n2+1的各位数字之和(n∈N*).如:因为142+1=197,1+9+7=17,所以f(14)=17.记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2006(8)=
5
5
分析:根据题中的对应法则,算出f1(8)、f2(8)、f3(8)、f4(8)的值,从而发现规律fk+3(8)=fk(8)对任意k∈N*成立,由此即可得到f2006(8)=f2(8)=5.
解答:解:∵82+1=65,∴f1(8)=f(8)=6+5=11,
同理,由112+1=122得f2(8)=1+2+2=5;由52+1=26,得f3(8)=2+6=8,
可得f4(8)=6+5=11=f1(8),f5(8)=f2(8),…,
∴fk+3(8)=fk(8)对任意k∈N*成立
又∵2006=3×668+2,
∴f2006(8)=f2003(8)=f2000(8)=…=f2(8)=5
故答案为:5
点评:本题给出函数fk(x)的对应法则,求f2006(8)的值.着重考查了函数的定义、数列的递推公式和进行简单的合情推理等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网