题目内容
7、若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=( )
分析:先利用前几项找到数列的特点或规律,fn(8)是以3为周期的循环数列,再求f2008(8)即可.
解答:解:由82+1=65?f(8)=5+6=11,
112+1=122?f(11)=1+2+2=5,
52+1=26?f(5)=2+6=8…?fn(8)是以3为周期的循环数列,又2008÷3的余数为1,故f2008(8)=f1(8)=f(8)=11.
故选A
112+1=122?f(11)=1+2+2=5,
52+1=26?f(5)=2+6=8…?fn(8)是以3为周期的循环数列,又2008÷3的余数为1,故f2008(8)=f1(8)=f(8)=11.
故选A
点评:本题考查了新定义型的题.关于新定义型的题,关键是理解定义,并会用定义来解题.
练习册系列答案
相关题目