题目内容

等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)若不等式
1
S1
+
1
S2
+…+
1
Sn
m-2009
4
对n∈N*成立,求最小正整数m的值.
分析:(1)设{an}的公差为d,{bn}的公比为q,结合b2S2=64,b3S3=960,求出公差与公比,即可求an与bn
(2)利用裂项法求和,从而可得不等式,即可求最小正整数m的值.
解答:解:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1
依题意,b2S2=64,b3S3=960,∴
S3b3=(9+3d)q2=960
S2b2=(6+d)q=64

解得
d=2
q=8
,或
d=-
6
5
q=
40
3
(舍去)     
an=3+2(n-1)=2n+1,bn=8n-1
(2)Sn=3+5+…+(2n+1)=n(n+2)
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
2n+3
2(n+1)(n+2)
3
4
m-2009
4

∴m≥2012,所以所求m的最小正整数是2012.
点评:本题考查数列的通项与求和,考查数列与不等式的综合,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网