题目内容

【题目】已知函数f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然对数的底数).
(1)若f(x)是(0,+∞)上的单调递增函数,求实数a的取值范围;
(2)当a∈ 时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.

【答案】
(1)解:f′(x)=2ex+(2x-4)ex+2a(x+2)=(2x-2)ex+2a(x+2),依题意,当x>0时,函数f′(x)≥0恒成立,即a≥- 恒成立,记g(x)=- ,则g′(x)=- =- <0,所以g(x)在(0,+∞)上单调递减,所以g(x)<g(0)= ,所以a≥ .
故a的取值范围为 .

(2)解:因为[f′(x)]′=2xex+2a>0,所以y=f′(x)是(0,+∞)上的增函数,又f′(0)=4a-2<0,f′(1)=6a>0,所以存在t∈(0,1)使得f′(t)=0,
又当x∈(0,t)时,f′(x)<0,当x∈(t,+∞)时,f′(x)>0,
所以当x=t时,f(x)min=f(t)=(2t-4)et+a(t+2)2.且有f′(t)=0a=-
则f(x)min=f(t)=(2t-4)et-(t-1)(t+2)et=et(-t2+t-2),t∈(0,1).
记h(t)=et(-t2+t-2),则h′(t)=et(-t2+t-2)+et(-2t+1)=et(-t2-t-1)<0,
所以h(1)<h(t)<h(0),
即f(x)的最小值的取值范围是(-2e,-2).
【解析】(1)首先求出原函数的导函数,再根据导函数的正负情况即可得出原函数的增减性,利用增减性的定义即可求出a的值。(2)根据函数的单调性求出f(x) 的最小值,从而求出最小值的取值范围。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网