题目内容
【题目】已知,下面结论正确的是( )
A.若,,且的最小值为π,则ω=2
B.存在ω∈(1,3),使得f(x)的图象向右平移个单位长度后得到的图象关于y轴对称
C.若f(x)在上恰有7个零点,则ω的取值范围是
D.若f(x)在上单调递增,则ω的取值范围是(0,]
【答案】BCD
【解析】
化简解析式.结合周期判断A选项的正确性,结合图象变换判断B选项的正确性,结合的零点判断C选项的正确性,结合的单调性判断D选项的正确性.
依题意,,.
对于A选项,若,,
且的最小值为,
则,
故A选项错误.
对于B选项,当时,,
向右平移个单位长度后得到,
其为偶函数,图象关于轴对称.故B选项正确.
对于C选项,,则,
若在上有恰有个零点,则,
解得,故C选项正确.
对于D选项,,则,
若在上递增,则,
即 ,由于,故.
所以D选项正确.
故选:BCD
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量(百台) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中,.