题目内容
若
=(
cosωx,sinωx),
=(sinωx,0),其中ω>0,函数f(x)=(
+
)•
+k.
(1)若f(x)图象申相邻两条对称轴间的距离不小于
,求ω的取值范围.
(2)若f(x)的最小正周期为π,且当x∈[-
,
]时,f(x)的最大值是
,求f(x)的解析式.
a |
3 |
b |
a |
b |
b |
(1)若f(x)图象申相邻两条对称轴间的距离不小于
π |
2 |
(2)若f(x)的最小正周期为π,且当x∈[-
π |
6 |
π |
6 |
1 |
2 |
分析:(1)由题设条件先推导出f(x)=sin(2ωx-
)+k+
.再由f(x)图象中相邻两条对称轴间的距离不小于
,知
=
≥
,利用ω>0,能求出ω的取值范围.
(2)由f(x)的最小正周期为π,能导出ω=1,故f(x)=sin(2x-
)+k+
,由当x∈[-
,
]时,f(x)的最大值是
,能求出k,进而能求出f(x).
π |
6 |
1 |
2 |
π |
2 |
T |
2 |
π |
2ω |
π |
2 |
(2)由f(x)的最小正周期为π,能导出ω=1,故f(x)=sin(2x-
π |
6 |
1 |
2 |
π |
6 |
π |
6 |
1 |
2 |
解答:解:(1)∵
=(
cosωx,sinωx),
=(sinωx,0),
∴
+
=(
cosωx+sinωx,sinωx),
∴f(x)=(
+
)•
+k
=
sinωxcosωx+sin2ωx+k
=
sin2ωx+
+k
=
sin2ωx-
cos2ωx+
+k
=sin(2ωx-
)+k+
.
∵f(x)图象中相邻两条对称轴间的距离不小于
,
∴
=
≥
,∴ω≤1,
∵ω>0,∴0<ω≤1.
(2)∵T=
=π,∴ω=1,
∴f(x)=sin(2x-
)+k+
,
∵x∈[-
,
],
∴2x-
∈[-
,
],
从而当2x-
=
,即x=
时,
f(x)max=f(
)=sin
+k+
=k+1=
,
∴k=-
,
故f(x)=sin(2x-
).
a |
3 |
b |
∴
a |
b |
3 |
∴f(x)=(
a |
b |
b |
=
3 |
=
| ||
2 |
1-cos2ωx |
2 |
=
| ||
2 |
1 |
2 |
1 |
2 |
=sin(2ωx-
π |
6 |
1 |
2 |
∵f(x)图象中相邻两条对称轴间的距离不小于
π |
2 |
∴
T |
2 |
π |
2ω |
π |
2 |
∵ω>0,∴0<ω≤1.
(2)∵T=
2π |
2ω |
∴f(x)=sin(2x-
π |
6 |
1 |
2 |
∵x∈[-
π |
6 |
π |
6 |
∴2x-
π |
6 |
π |
2 |
π |
6 |
从而当2x-
π |
6 |
π |
6 |
π |
6 |
f(x)max=f(
π |
6 |
π |
6 |
1 |
2 |
1 |
2 |
∴k=-
1 |
2 |
故f(x)=sin(2x-
π |
6 |
点评:本题考查三角函数的恒等变换的应用,考查三角函数解析式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关题目