题目内容

已知等比数列{an}的首项为8,Sn是其前n项的和,某同学经计算得S2=20,S3=36,S4=65,后来该同学发现了其中一个数算错了,则该数为(  )
A、S1B、S2C、S3D、S4
分析:假设后三个数均未算错,根据题意可得a22≠a1a3,所以S2、S3中必有一个数算错了.再假设S2算错了,根据题意得到S3=36≠8(1+q+q2),矛盾.进而得到答案.
解答:解:根据题意可得显然S1是正确的.
假设后三个数均未算错,则a1=8,a2=12,a3=16,a4=29,可知a22≠a1a3,所以S2、S3中必有一个数算错了.
若S2算错了,则a4=29=a1q3q=
329
2
,显然S3=36≠8(1+q+q2),矛盾.
所以只可能是S3算错了,此时由a2=12得q=
3
2
,a3=18,a4=27,S4=S2+18+27=65,满足题设.
故选C.
点评:本题考查等比数列的基本概念与性质和学生推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网