题目内容
(2013•安徽)设函数fn(x)=-1+x+
+
++
(x∈R,n∈N+),证明:
(1)对每个n∈N+,存在唯一的xn∈[
,1],满足fn(xn)=0;
(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p<
.
x2 |
22 |
x3 |
32 |
xn |
n2 |
(1)对每个n∈N+,存在唯一的xn∈[
2 |
3 |
(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p<
1 |
n |
分析:(1)由题意可得f′(x)>0,函数f(x)在(0,+∞)上是增函数.求得fn(1)>0,fn(
)<0,再根据函数的零点的判定定理,可得要证的结论成立.
(2)由题意可得fn+1(xn)>fn(xn)=fn+1(xn+1)=0,由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,故xn-xn+p>0.用 fn(x)的解析式减去fn+p (xn+p)的
解析式,变形可得xn-xn+p=
+
,再进行放大,并裂项求和,可得它小于
,综上可得要证的结论成立.
2 |
3 |
(2)由题意可得fn+1(xn)>fn(xn)=fn+1(xn+1)=0,由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,故xn-xn+p>0.用 fn(x)的解析式减去fn+p (xn+p)的
解析式,变形可得xn-xn+p=
n |
k=2 |
xn+pk-xnk |
k2 |
n+p |
k=n+1 |
xn+pk |
k2 |
1 |
n |
解答:证明:(1)对每个n∈N+,当x>0时,由函数fn(x)=-1+x+
+
++
(x∈R,n∈N+),可得
f′(x)=1+
+
+…
>0,故函数f(x)在(0,+∞)上是增函数.
由于f1(x1)=0,当n≥2时,fn(1)=
+
+…+
>0,即fn(1)>0.
又fn(
)=-1+
+[
+
+
+…+
]≤-
+
•
(
)i=-
+
×
=-
•(
)n-1<0,
根据函数的零点的判定定理,可得存在唯一的xn∈[
,1],满足fn(xn)=0.
(2)对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+
>fn(x),
∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.
由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,即 xn-xn+1>0,故数列{xn}为减数列,即对任意的 n、p∈N+,xn-xn+p>0.
由于 fn(x)=-1+xn+
+
+…+
=0 ①,
fn+p (xn+p)=-1+xn+p+
+
+…+
+[
+
+…+
]②,
用①减去②并移项,利用 0<xn+p≤1,可得
xn-xn+p=
+
≤
≤
<
=
-
<
.
综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p<
.
x2 |
22 |
x3 |
32 |
xn |
n2 |
f′(x)=1+
x |
2 |
x2 |
3 |
xn-1 |
n |
由于f1(x1)=0,当n≥2时,fn(1)=
1 |
22 |
1 |
32 |
1 |
n2 |
又fn(
2 |
3 |
2 |
3 |
(
| ||
22 |
(
| ||
32 |
(
| ||
42 |
(
| ||
n2 |
1 |
3 |
1 |
4 |
n |
i=2 |
2 |
3 |
1 |
3 |
1 |
4 |
(
| ||||
1-
|
=-
1 |
3 |
2 |
3 |
根据函数的零点的判定定理,可得存在唯一的xn∈[
2 |
3 |
(2)对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+
xn+1 |
(n+1)2 |
∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.
由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,即 xn-xn+1>0,故数列{xn}为减数列,即对任意的 n、p∈N+,xn-xn+p>0.
由于 fn(x)=-1+xn+
xn2 |
22 |
xn3 |
32 |
xnn |
n2 |
fn+p (xn+p)=-1+xn+p+
xn+p2 |
22 |
xn+p3 |
32 |
xn+pn |
n2 |
xn+pn+1 |
(n+1)2 |
xn+pn+2 |
(n+2)2 |
xn+pn+p |
(n+p)2 |
用①减去②并移项,利用 0<xn+p≤1,可得
xn-xn+p=
n |
k=2 |
xn+pk-xnk |
k2 |
n+p |
k=n+1 |
xn+pk |
k2 |
n+p |
k=n+1 |
xn+pk |
k2 |
n+p |
k=n+1 |
1 |
k2 |
n+p |
k=n+1 |
1 |
k(k-1) |
1 |
n |
1 |
n+p |
1 |
n |
综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn-xn+p<
1 |
n |
点评:本题主要考查函数的导数及应用,函数的零点的判定,等比数列求和以及用放缩法证明不等式,还考查推理以及运算求解能力,属于难题.
练习册系列答案
相关题目