题目内容
(2010•成都一模)在数列{an}中,a1=1,an+1=an2+4an+2,n∈N*.
(I)设bn=log3(an+2),证明数列{bn}是等比数列;
(II)求数列{an}的通项公式;
(III)设cn=
-
+
,求数列{cn}的前n项和Tn.
(I)设bn=log3(an+2),证明数列{bn}是等比数列;
(II)求数列{an}的通项公式;
(III)设cn=
4 |
an-2 |
1 |
an |
1 |
an+4 |
分析:(I)由a1=1,an+1=an2+4an+2可得an+1+2=(an+2)2,则log3(an+1+2)=2(log3an+2)即可证
(II)由(I)可得bn=2n-1,从而可求
(III)由an+1=an2+4an+2,可得an+1-2=an2+4an则cn=
-
+
=
-(
-
)=
-
=
-
,利用裂项求和
(II)由(I)可得bn=2n-1,从而可求
(III)由an+1=an2+4an+2,可得an+1-2=an2+4an则cn=
4 |
an-2 |
1 |
an |
1 |
an+4 |
4 |
an-2 |
1 |
an |
1 |
4+an |
4 |
an-2 |
4 |
an(an+4) |
4 |
an-2 |
4 |
an+1-2 |
解答:证明:(I)由a1=1,an+1=an2+4an+2
得an+1+2=(an+2)2
∴log3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
即log3(an+2)=2n-1
∴an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
∵cn=
-
+
=
-(
-
)
=
-
=
-
(10分)
∴Tn=c1+c2+…+cn=
-
+…+
-
(10分)
=
-
=-4-
(12分)
得an+1+2=(an+2)2
∴log3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
即log3(an+2)=2n-1
∴an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
∵cn=
4 |
an-2 |
1 |
an |
1 |
an+4 |
4 |
an-2 |
1 |
an |
1 |
4+an |
=
4 |
an-2 |
4 |
an(an+4) |
4 |
an-2 |
4 |
an+1-2 |
∴Tn=c1+c2+…+cn=
4 |
a1-2 |
4 |
a2-1 |
4 |
an-2 |
4 |
an+1-2 |
=
4 |
a1-2 |
4 |
an+1-2 |
4 |
32n-4 |
点评:本题主要考查了利用数列的递推公式求解数列的通项公式,解题中要注意构造等比数列求解通项公式,利用裂项求和,属于数列知识的综合应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目