题目内容

(2010•成都一模)在数列{an}中,a1=1,an+1=an2+4an+2,n∈N*
(I)设bn=log3(an+2),证明数列{bn}是等比数列;
(II)求数列{an}的通项公式;
(III)设cn=
4
an-2
-
1
an
+
1
an+4
,求数列{cn}的前n项和Tn
分析:(I)由a1=1,an+1=an2+4an+2可得an+1+2=(an+2)2,则log3(an+1+2)=2(log3an+2)即可证
(II)由(I)可得bn=2n-1,从而可求
(III)由an+1=an2+4an+2,可得an+1-2=an2+4ancn=
4
an-2
-
1
an
+
1
an+4
=
4
an-2
-(
1
an
-
1
4+an
)
=
4
an-2
-
4
an(an+4)
=
4
an-2
-
4
an+1-2
,利用裂项求和
解答:证明:(I)由a1=1,an+1=an2+4an+2
an+1+2=(an+2)2
∴log3(an+1+2)=2(log3an+2)(3分)
∵bn=log3(an+2),
∴b1=1,bn+1=2bn(5分)
(II)由(I)可得bn=2n-1
log3(an+2)=2n-1
an=32n-1-2(8分)
(III)∵an+1=an2+4an+2,
∴an+1-2=an2+4an
cn=
4
an-2
-
1
an
+
1
an+4
=
4
an-2
-(
1
an
-
1
4+an
)

=
4
an-2
-
4
an(an+4)
=
4
an-2
-
4
an+1-2
(10分)
∴Tn=c1+c2+…+cn=
4
a1-2
-
4
a2-1
+…+
4
an-2
-
4
an+1-2
(10分)
=
4
a1-2
-
4
an+1-2
=-4-
4
32n-4
(12分)
点评:本题主要考查了利用数列的递推公式求解数列的通项公式,解题中要注意构造等比数列求解通项公式,利用裂项求和,属于数列知识的综合应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网