题目内容
【题目】在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2 ﹣cos2(B+C)= ,若a=2,则△ABC的面积的最大值是 .
【答案】
【解析】
解:∵A+B+C=π,
∴4cos2 ﹣cos2(B+C)=2(1+cosA)﹣cos2A=﹣2cos2A+2cosA+3= ,
∴2cos2A﹣2cosA+ =0.
∴cosA= .
∵0<A<π,∴A= °.
∵a=2,由余弦定理可得:4=b2+c2﹣bc≥2bc﹣bc=bc,(当且仅当b=c=2,不等式等号成立).
∴bc≤4.
∴S△ABC= bcsinA≤ × = .
所以答案是: .
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目
【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素x、y满足:x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.