题目内容

【题目】已知函数f(x)=x2﹣ax+2lnx(其中a是实数).
(1)求f(x)的单调区间;
(2)若设2(e+ )<a< ,且f(x)有两个极值点x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).

【答案】
(1)解:∵f(x)=x2﹣ax+2lnx(其中a是实数),

∴f(x)的定义域为(0,+∞), =

令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x= ,g(0)=2,

当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,

∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.

当△=a2﹣16>0,即a<﹣4或a>4时,

①若a<﹣4,则f′(x)>0恒成立,

∴f(x)的单调递增区间为(0,+∞),无减区间.

②若a>4,令f′(x)=0,得

当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.

∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).

综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.

当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2


(2)解:由(1)知,若f(x)有两个极值点,则a>4,且x1+x2= >0,x1x2=1,∴0<x1<1<x2

又∵ ,a=2( ), ,e+ <3+

又0<x1<1,解得

∴f(x1)﹣f(x2)=( )﹣(

=( )﹣a(x1﹣x2)+2(lnx1﹣lnx2

=(x1﹣x2 ﹣a(x1﹣x2)+2ln

=﹣( )(x1+ )+4lnx1

=

令h(x)= ,( ),

<0恒成立,

∴h(x)在( )单调递减,∴h( )<h(x)<h( ),

﹣4<f(x1)﹣f(x2)< ﹣4ln3,

故f(x1)﹣f(x2)的取值范围为(


【解析】(1)求出f(x)的定义域为(0,+∞), = ,由此利用导数性质和分类讨论思想能求出f(x)的单调区间.(2)推导出f(x1)﹣f(x2)= ,令h(x)= ,( ),则 <0恒成立,由此能求出f(x1)﹣f(x2)的取值范围.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网