题目内容

1.用30cm的铁丝围成一个扇形,当扇形半径为$\frac{15}{2}$cm的时候扇形面积最大?

分析 设出扇形的圆心角α,半径r,面积S,弧长l,根据题意求出扇形面积S的表达式,求出最大值以及对应的半径r是多少.

解答 解:设扇形的圆心角为α,半径为r,面积为S,弧长为l,
∴扇形的周长是l+2r=30;
∴l=30-2r,
∴S=$\frac{1}{2}$•l•r=$\frac{1}{2}$(30-2r)•r=-r2+15r=-(r-$\frac{15}{2}$)2+$\frac{225}{4}$
∴当半径r=$\frac{15}{2}$cm时,扇形面积的最大值是$\frac{225}{4}$cm2
故答案为:$\frac{15}{2}$cm.

点评 本题考查了扇形面积的应用问题,解题时应建立目标函数,求目标函数的最值即可,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网