题目内容
【题目】在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)已知点M (2,0),若直线l与曲线C相交于P、Q两点,求的值.
【答案】(1)l: ,C方程为 ;(2)=
【解析】
(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用一元二次方程根和系数关系式的应用求出结果.
(1)曲线C的参数方程为(m为参数),
两式相加得到,进一步转换为.
直线l的极坐标方程为ρcos(θ+)=1,则
转换为直角坐标方程为.
(2)将直线的方程转换为参数方程为(t为参数),
代入得到(t1和t2为P、Q对应的参数),
所以,,
所以=.
练习册系列答案
相关题目