题目内容
【题目】在平面直角坐标系中,直线的参数方程为(为参数,为常数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)当直线与曲线相切时,求出常数的值;
(2)当为曲线上的点,求出的最大值.
【答案】(1)或.(2)
【解析】
(1)先利用极坐标和直角坐标的互化公式,将曲线的极坐标方程化为普通方程,再将直线的参数方程化为普通方程,然后根据直线与椭圆的位置关系,利用,即可求出的值;
(2)将曲线的直角坐标方程化为参数方程,即可表示出,再利用辅助角公式化简成的形式,即可求出最大值.
(1)由题可知:,∴,
∴曲线的直角坐标方程为,
直线的普通方程为,
两方程联立可得,,
可知,
解得或.
(2)曲线的方程,可设,
则,其中,可知最大值为.
【题目】2019年篮球世界杯在中国举行,中国男篮由于主场作战而备受观众瞩目.为了调查国人对中国男篮能否进入十六强持有的态度,调查人员随机抽取了男性观众与女性观众各100名进行调查,所得情况如下表所示:
男性观众 | 女性观众 | |
认为中国男篮能够进入十六强 | 60 | |
认为中国男篮不能进入十六强 |
若在被抽查的200名观众中随机抽取1人,抽到认为中国男篮不能进入十六强的女性观众的概率为.
(1)完善上述表格;
(2)是否有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关?
附:,其中.
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在A,B试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中a的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,若在A,B两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)