题目内容
【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.
(1)求甲、乙、丙三名同学都选高校的概率;
(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.
(i)求甲同学选高校且乙、丙都未选高校的概率;
(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.
【答案】(1) (2)(i)(ii)分布列见解析,
【解析】
(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;
(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;
(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.
(1)甲从五所高校中任选2所,共有
共10种情况,
甲、乙、丙同学都选高校,共有四种情况,
甲同学选高校的概率为,
因此乙、丙两同学选高校的概率为,
因为每位同学彼此独立,
所以甲、乙、丙三名同学都选高校的概率为.
(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,
丙未选高校的概率为,因为每位同学彼此独立,
所以甲同学选高校且乙、丙都未选高校的概率为.
(ii),
因此
,
.
即的分布列为
0 | 1 | 2 | 3 | |
因此数学期望为
.
练习册系列答案
相关题目