题目内容
9.已知数列{an}满足:a1+a2+a3+…+an-1=n2-1(n≥2,n∈N+),数列{bn}满足:3nbn+1=(n+1)an+1-nan,且b1=3.(Ⅰ)分别求出an,bn的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,求Tn.
分析 (Ⅰ)在数列递推式中取n=n+1得另一递推式,和原递推式作差后可得an=2n+1(n≥2),验证首项后得an=2n+1(n∈N+),把{an}的通项公式代入3nbn+1=(n+1)an+1-nan,整理即可求得:${b_n}=\frac{4n-1}{{{3^{n-1}}}}$(n∈N+);
(Ⅱ)直接利用错位相减法求数列{bn}的前n项和为Tn.
解答 解:(Ⅰ)由${a_1}+{a_2}+{a_3}+…+{a_{n-1}}={n^2}-1(n≥2,n∈{N_+})$,
于是,${a_1}+{a_2}+{a_3}+…+{a_{n-1}}+{a_n}={(n+1)^2}-1$,
两式相减得,an=2n+1(n≥2),又由已知可得a1=3,满足上式,
∴an=2n+1(n∈N+),
由3nbn+1=(n+1)an+1-nan,得:3nbn+1=(n+1)(2n+3)-n(2n+1=4n+3,
∴${b_{n+1}}=\frac{4n+3}{3^n}$,于是,当n≥2时,${b_n}=\frac{4n-1}{{{3^{n-1}}}}$,又b1=3适合上式,
${b_n}=\frac{4n-1}{{{3^{n-1}}}}$(n∈N+);
(Ⅱ)由(1)知,${b_n}=\frac{4n-1}{{{3^{n-1}}}}$,
∴${T_n}=\frac{3}{1}+\frac{7}{3}+\frac{11}{3^2}+…+\frac{4n-5}{{{3^{n-2}}}}+\frac{4n-1}{{{3^{n-1}}}}$…①
得$\frac{1}{3}{T_n}=\frac{3}{3}+\frac{7}{3^2}+\frac{11}{3^3}+…+\frac{4n-5}{{{3^{n-1}}}}+\frac{4n-1}{3^n}$…②
①-②得$\frac{2}{3}{T_n}=3+\frac{4}{3}+\frac{4}{3^2}+…+\frac{4}{{{3^{n-1}}}}-\frac{4n-1}{3^n}$=$3+4×\frac{{\frac{1}{3}(1-\frac{1}{{{3^{n-1}}}})}}{{1-\frac{1}{3}}}-\frac{4n-1}{3^n}=5-\frac{4n+5}{3^n}$,
综上,${T_n}=\frac{15}{2}-\frac{4n+5}{{2×{3^{n-1}}}}$.
点评 本题考查了数列递推式,考查了错位相减法求数列的通项公式和数列的前n项和,是中档题.
A. | {x|x<1} | B. | {x|1≤x<2} | C. | {x|x>2} | D. | {x|1<x≤2} |