题目内容
设数列{an}的前n项和为Sn,点P(Sn,an)在直线(2-m)x+2my-m-2=0上,其中m为常数,且m>0.(Ⅰ)求证:{an}是等比数列,并求其通项an;
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求证:{
1 | bn |
(Ⅲ)设数列{cn}满足cn=bnbn+1,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N+)求T的最大值.
分析:(Ⅰ)由题设知(2-m)Sn+2man-m-2=0,当n=1时,a1=S1,(2-m)a1+2ma1-m-2=0,a1=1,当n≥2时,(2-m)Sn-1+2man-1-m-2=0,
两式相减得(2+m)an=2man-1,由此能求出其通项an;
(Ⅱ)由q=f(m)=
,知bn=f(bn-1)=
,
=1,由此能证明{
}成等差数列;
(Ⅲ)由{cn}满足cn=bn•bn+1=
>0,知Tn递增.Tn≥T1=C1=
,要满足Tn≥T对任意n∈N+都成立,T≤
.由此能求出T的最大值.
两式相减得(2+m)an=2man-1,由此能求出其通项an;
(Ⅱ)由q=f(m)=
2m |
m+2 |
2bn-1 |
bn-1+2 |
1 |
b1 |
1 |
bn |
(Ⅲ)由{cn}满足cn=bn•bn+1=
4 |
(n+1)(n+2) |
2 |
3 |
2 |
3 |
解答:解:(Ⅰ)∵点P(Sn,an)在直线(2-m)x+2my-m-2=0上,
∴(2-m)Sn+2man-m-2=0*(1分)
当n=1时,a1=S1,∴(2-m)a1+2ma1-m-2=0,
∴a1(m+2)=m+2∴a1=1,(2分)
当n≥2时,由*式知(2-m)Sn-1+2man-1-m-2=0**,
两式相减得(2+m)an=2man-1∵m>0∴
=
,
∴an=a1(
)n-1=(
)n-1,
又当n=1时也适合,∴{an}是等比数列,
通项an=(
)n-1;(5分)
(Ⅱ)由Ⅰ知q=f(m)=
,
∴bn=f(bn-1)=
,
∴
=
+
即
-
=
,又
=1也适合,
∴{
}成等差数列,(7分)
其通项
=
,∴bn=
(9分)
(Ⅲ)∵{cn}满足cn=bn•bn+1=
>0Tn为数列{cn}的前n项和,
∴{Tn}是递增娄数列;(11分)
∴Tn≥T1=C1=
,要满足Tn≥T对任意n∈N+都成立,
∴T≤
.∴T的最大值为
.(13分)
∴(2-m)Sn+2man-m-2=0*(1分)
当n=1时,a1=S1,∴(2-m)a1+2ma1-m-2=0,
∴a1(m+2)=m+2∴a1=1,(2分)
当n≥2时,由*式知(2-m)Sn-1+2man-1-m-2=0**,
两式相减得(2+m)an=2man-1∵m>0∴
an |
an-1 |
2m |
m+2 |
∴an=a1(
2m |
m+2 |
2m |
m+2 |
又当n=1时也适合,∴{an}是等比数列,
通项an=(
2m |
m+2 |
(Ⅱ)由Ⅰ知q=f(m)=
2m |
m+2 |
∴bn=f(bn-1)=
2bn-1 |
bn-1+2 |
∴
1 |
bn |
1 |
bn-1 |
1 |
2 |
即
1 |
bn |
1 |
bn-1 |
1 |
2 |
1 |
b1 |
∴{
1 |
bn |
其通项
1 |
bn |
n+1 |
2 |
2 |
n+1 |
(Ⅲ)∵{cn}满足cn=bn•bn+1=
4 |
(n+1)(n+2) |
∴{Tn}是递增娄数列;(11分)
∴Tn≥T1=C1=
2 |
3 |
∴T≤
2 |
3 |
2 |
3 |
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用,挖掘题设中的陷含条件.
练习册系列答案
相关题目