题目内容
已知函数f(x)=ln x+2x-6.
(1)证明:函数f(x)有且只有一个零点;
(2)求该零点所在的一个区间,使这个区间的长度不超过
(1)证明:函数f(x)有且只有一个零点;
(2)求该零点所在的一个区间,使这个区间的长度不超过
(1)见解析(2)
(1)f(x)的定义域为(0,+∞),且f(x)是增函数.
∵f(2)=ln 2-2<0,f(3)=ln 3>0,
∴f(2)·f(3)<0.
∴f(x)在(2,3)上至少有一个零点.
又因f(x)在(0,+∞)上是增函数,
从而f(x)在(0,+∞)上有且只有一个零点.
(2)由(1)知f(2)<0,f(3)>0.
∴f(x)的零点x0∈(2,3).
取x1=,∵f=ln -1=ln-ln e<0,∴f·f(3)<0,∴x0∈.
取x2=,∵f=ln -=ln -ln e >0,∴f·f<0.
∴x0∈且=≤,∴即为符合条件的区间.
∵f(2)=ln 2-2<0,f(3)=ln 3>0,
∴f(2)·f(3)<0.
∴f(x)在(2,3)上至少有一个零点.
又因f(x)在(0,+∞)上是增函数,
从而f(x)在(0,+∞)上有且只有一个零点.
(2)由(1)知f(2)<0,f(3)>0.
∴f(x)的零点x0∈(2,3).
取x1=,∵f=ln -1=ln-ln e<0,∴f·f(3)<0,∴x0∈.
取x2=,∵f=ln -=ln -ln e >0,∴f·f<0.
∴x0∈且=≤,∴即为符合条件的区间.
练习册系列答案
相关题目