题目内容
【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.
(Ⅰ)试将该企业每天生产这种产品所获得的利润表示为的函数;
(Ⅱ)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?
【答案】(Ⅰ);(Ⅱ),利润最大,最大为.
【解析】
试题分析:(Ⅰ)利用利润盈利亏损,得到与的关系,再将代入整理即可求出与之间的函数关系;(Ⅱ)对(Ⅰ)中解析式求导,利用单调性,找到取最大值时的值,求出最大利润.
试题解析:(Ⅰ)根据题意,该企业所得利润为:
.
(Ⅱ)由(Ⅰ)知:
.
令,可得或.
从而当时,,函数在上为增函数;
当时,,函数在上为减函数
所以当时函数取得极大值即为最大值,
当时,,
所以每台机器的日产量为万件时,该企业的利润最大,最大利润为(万元).
练习册系列答案
相关题目