题目内容

2.已知a>1,b>1,且$\frac{1}{a-1}$+$\frac{1}{b-1}$=1,则a+4b的最小值为14.

分析 由题意可得a-1>0且b-1>0,可得a+4b=(a-1)+4(b-1)+5=[(a-1)+4(b-1)]($\frac{1}{a-1}$+$\frac{1}{b-1}$)+5=10+$\frac{4(b-1)}{a-1}$+$\frac{a-1}{b-1}$,由基本不等式可得.

解答 解:∵a>1,b>1,
∴a-1>0且b-1>0,
又∵$\frac{1}{a-1}$+$\frac{1}{b-1}$=1,
∴a+4b=(a-1)+4(b-1)+5,
=[(a-1)+4(b-1)]($\frac{1}{a-1}$+$\frac{1}{b-1}$)+5,
=10+$\frac{4(b-1)}{a-1}$+$\frac{a-1}{b-1}$≥10+2$\sqrt{\frac{4(b-1)}{a-1}•\frac{a-1}{b-1}}$=14,
当且仅当$\frac{4(b-1)}{a-1}$=$\frac{a-1}{b-1}$即a=4且b=$\frac{5}{2}$时取等号.
故答案为:14.

点评 本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网